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Abstract

A series of wind tunnel tests were
conducted to assess the effects of
leading edge ice contamination upon
the performance of a short-haul
transport.  The wind tunnel test was
conducted in the NASA Langley 14 by
22 foot facility.  The test article was a
1/8 scale twin-engine short-haul jet
transport model.  Two separate leading
edge ice contamination configurations
were tested in addition to the
uncontaminated baseline configuration.
Several aircraft configurations were
examined including various flap and
slat deflections, with and without
landing gear.  Data gathered included
force measurements via an internal six-
component force balance, pressure
measurements through 700
electronically scanned wing pressure
ports, and wing surface flow

visualization measurements.  The
artificial ice contamination caused
significant performance degradation
and caused visible changes
demonstrated by the flow visualization.
The data presented here is just a
portion of the data gathered.  A more
complete data report is planned for
publication as a NASA Technical
Memorandum and data supplement.

Nomenclature

b wing span, feet

cs slat chord length, feet

cw wing main element chord length,
feet

cff forward flap element chord
length, feet
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cmf mid flap element chord length,
feet

caf aft flap element chord length, feet

cp pressure coefficient, (pn-patm)/q

CD drag coefficient, Drag/qS

CL lift coefficient, Lift/qS

Cm pitching moment coefficient,
pitching moment/qSb

patm atmospheric pressure, lb/ft2

pn pressure at specific model tap

n=1,2..., lb/ft2

q free-stream dynamic pressure,
lb/ft2

S wing area, ft2

α angle of attack, deg

β sideslip angle, deg

δf flap deflection angle, deg

Introduction

Aircraft icing simulation methods are
currently under development in order to
provide design and certification tools for
the aircraft industry.  These tools
include simulation methods for ice
accretion, ice protection system
performance, and aircraft performance
degradation, and scaling methods.  As
in all computer simulations of physical
processes, it is important to determine
the quality of the prediction.  This paper
presents results of an experimental
program designed to provide validation

information for performance
degradation of a commercial transport
aircraft with ice accumulated on its wing
and tail.

It is important to understand how ice
accretions can influence the
aerodynamic behavior of an aircraft in
order to determine the ice protection
requirements and to understand the
effects of an ice protection system
failure.  This is currently done through
flight and wind tunnel tests using real or
artificial ice accretions.  The
development of a reliable
computational tool for evaluation of
performance changes due to ice
accretion would help to decrease the
number of such tests and in turn reduce
the time and costs of design and
certification.

The need for a computational tool and
validation database is based on the
desire of several aircraft manufacturers
to determine the size and shape of ice
accretions which are critical to
aerodynamic performance.  Currently,
there is not a great deal of such data
publicly available for a complete aircraft
with ice.  There have been several
studies of airfoil and wing models with
leading edge ice accretions1-3.  These
have provided information of sufficient
quality to assess the accuracy of
computational simulations and have
helped to point out areas for
improvement of such simulation
methods.   The data from this test
program should serve a similar purpose
for the evaluation of simulation methods
applied to complete aircraft
configurations.

Test Apparatus

The wind tunnel test was conducted in
the NASA Langley 14 by 22 foot
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subsonic wind tunnel.  The test article
for the test was a 1/8 scale twin-engine
short-haul jet transport model.  Several
aircraft configurations were examined
including various flap and slat
deflections, with and without landing
gear.   Two separate configurations of
leading edge ice contamination were
tested in addition to the
uncontaminated baseline configuration.

Facility Description

The NASA Langley 14 by 22 foot
Subsonic Tunnel4 is a closed-circuit,
single return, atmospheric wind tunnel
with a test section that can be operated
in a variety of configurations: closed,
slotted, partially open, and open.  For
this test, the test section was operated
in the closed configuration.  The closed
test section is 14.5 feet high by 21.75
feet wide by 50 feet long.

Model Description

The model used for this test was a 1/8
scale twin-engine subsonic transport
with multi-element wings5 shown in
figure 1.  The empennage consisted of
a vertical tail with rudder and a
motorized horizontal stabilizer with
elevator.  The engines were
represented by two flow-through
nacelles.  The model was tested in
cruise, take-off, and landing
configurations.

Ice shape description

Two different artificial ice shapes were
used for this test.  They were based
upon drawings of ice shapes used by
Boeing for a mid 1960s wind tunnel test
of a similar aircraft6.  The two shapes
represent realistically sized ice

accretions for this configuration.
Because of the age of the information,
no clear documentation was identified
stating the method of determining these
shapes, however, it is conjectured that
the shapes were developed using
either the Boeing ice shape prediction
technique7 or the method described in
the FAA icing handbook8.

The Boeing outlines were transformed
to provide the appropriate scale and
orientation for production of the artificial
ice shapes in the NASA Lewis
Research Center's wood-model shop.
The ice shapes were manufactured for
inboard and outboard wing, vertical tail
and horizontal tail surfaces for both
sides of the aircraft.  The ice shapes
were attached to the aircraft model
using mechanical fasteners and double
sided adhesive tape.  Figures 2 and 3
show the artificial ice shapes attached
to the horizontal tail.  After being
attached, the joints between the aircraft
model and the ice shapes were filled
using modeling clay.  Profiles of the ice
shapes installed on the aerodynamic
surfaces were measured after the test to
document the ice shapes used and
their alignment to the aircraft surfaces.

Roughness determination

The roughness size for the model ice
shapes was calculated by scaling down
experimentally measured roughness.
Roughness elements have been
measured in the NASA Lewis Icing
Research Tunnel and have been
determined to be on the order of 0.02
inches9,10.  This approximate value
does not appear to vary significantly as
the chord length or airfoil section
changes, and is therefore considered
reasonable for the full scale transport
ice accretion. The next step in
calculating the model ice roughness
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size was to determine an appropriate
scaling method.  Neither full scale
roughness nor geometrically scaled
roughness are appropriate, since
neither will appropriately address the
change in the flow field due to the
presence of roughness.  The method
selected was to scale the roughness
with the ratio of the model to full scale
boundary layer momentum thicknesses.
The momentum thickness was
calculated for both the full scale and 1/8
scale ice shapes using Cebeci's IBL
computer program11,12.  The average
ratio between the two momentum
thickness was 0.5411.  When the full
scale roughness size of 0.02 inches is
multiplied by the scaling ratio of 0.5411,
the scale model roughness size
becomes 0.011 inches.  This
corresponds to a roughness that falls
between a #60 and #70 grit.  #60 grit,
with nominal 0.0117 inch diameters,
was utilized for this experiment.  Figure
4 is a close-up view of the grit applied
to the artificial ice shape.

Test Procedures

The test was conducted at dynamic
pressures, q, from 10 lb/ft2 to 50 lb/ft2
corresponding to Reynolds numbers of
8.2 x 105 to 1.8 x 106 and Mach
numbers of 0.08 to 0.18.  Data was
obtained over an angle-of-attack range
from -4o through 16o with sideslip
varying from -10o to 10o.

Aerodynamic forces and moments were
obtained with a six-component strain-
gauge balance and wing pressures
were obtained with electronically
scanned pressure devices from flush
pressure ports.  Angle-of-attack and
sideslip were measured electronically
in the model/model support system.
Wing, body and wake blockage
corrections to free stream dynamic

pressure13 were applied as were
corrections for tunnel wall
interference14.

Two different flow visualization
techniques were utilized during this
test.  The first technique was a surface
oil method that utilized motor oil with a
fluorescent additive viewed under
ultraviolet lighting.  The oil was painted
on the left wing surface in a span-wise
direction.  When the proper test
condition was achieved an overhead
photograph was quickly taken with an
ultraviolet flash.  Due to the restrictive
nature of this testing technique, only a
select number of model configurations
were examined with this technique.

A less restrictive technique was utilized
for almost all test conditions.  This
technique makes use of fluorescent
mono-filament wing tufts glued to the
left wing.  The tufts were digitally
photographed using an ultraviolet flash.
The "mini-tufts" do not provide quite the
image resolution of the oil flow
visualization technique, but proved to
be much more practical for regular use
since they required little upkeep from
one test condition to the next.

Results

The lift, moment and drag coefficients
are shown in figure 5 for the 40o flap
deflection model configuration with the
uncontaminated leading edge and the
#2 ice shape attached to various
surfaces.  The lift and pitching moment
are clearly influenced by the presence
of ice contamination on the outboard
wing, but seem to be rather insensitive
to the presence of ice on the horizontal
tail.

Figures 6 through 9 show the chord-
wise wing pressure coefficient
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distributions for the various
instrumented span-wise locations of the
right model wing for both the clean and
leading edge ice-contaminated
configurations.  The influence of
leading edge ice contamination on the
pressure distributions of the wing is
particularly evident in figures 7 and 8
(10o and 13o angle-of-attack,
respectively), visible to a lesser degree
in figure 9 (15o angle-of-attack), and
nearly indiscernible in figure 6 (6o
angle-of-attack).  The varying
differences can be explained by
examining the oil flow visualization
data.

The oil flow visualization images shown
in figures 10 through 21 help explain
the behavior seen in the wing pressure
distribution data.  Figures 10 and 11 (0o
angle-of-attack) show no visible
difference in the wing flow patterns
between the clean and contaminated
configurations.  Flows in both cases
appear to be completely attached.
Figures 12 and 13 (8o angle-of-attack)
show only a small difference in the wing
tip region.  Beginning with figures 14
and 15 (10o angle-of-attack) a more
significant difference in the two flow
patterns becomes visible.  The flow is
clearly beginning to separate at about
the half span point on the contaminated
wing.  Moving to figures 16 and 17 (12o
angle-of-attack) the separated region
on the contaminated wing becomes
even more significant, with a large
portion of the wing demonstrating
detached flow.  This separated region
gets larger as the angle-of-attack is
increased to 13o in figures 18 and 19.
And it is not until 15o angle-of-attack
(figures 20 and 21) that the clean wing
begins to demonstrate separated flow.
Referring back to figure 5, the flow
visualization images do a good job of

explaining the differences seen in the
various plots, particularly in the
coefficient of lift plot.  The flow
visualization images also support the
wing pressure data in figures 6
through 9.

This series of force, moment, and
pressure data and flow visualization
images is representative of the data
and the trends seen for the entire test.

Conclusions

Wind tunnel tests examining the effects
of leading edge ice contamination upon
the performance of a short-haul
transport were discussed.  Data
gathered included force measurements,
wing pressure measurements, and
wing surface flow visualization
measurements.  As demonstrated by
the flow visualization, the artificial ice
contamination caused notable flow
changes which resulted in significant
performance degradations.  Due to
constraints of practical publication, the
data presented here is just a small
portion of data gathered.  A much larger
data report is planned for publication in
the near future as a NASA Technical
Memorandum and data supplement.
This will represent the first major
database of icing effects with a full
aircraft configuration for code validation
available in the public domain.

Acknowledgments

The authors would like to thank the
efforts of the craftsmen in the NASA
Lewis Research Center's wood-model
shop, the engineers and technicians at
the NASA Langley Research Center's
14x22 foot wind tunnel, and especially
Mike Schura for assistance in
determining the ice shapes to be



6

examined.  Without their assistance,
this wind tunnel test would not have
been possible.

References

1. Bragg, M.B. and Spring, S.A., "An
Experimental Study of the Flow Field
about an Airfoil with Glaze Ice," AIAA
Paper 87-0100, Jan. 1987.

2. Khodadoust, A. and Bragg,
M.B.,"Measured Aerodynamic
Performance of a Swept Wing with a
Simulated Ice Accretion," AIAA Paper
90-0490, Jan. 1990.

3. Flemming, R.J., Britton, R.K., and
Bond, T.H., "Model Rotor Icing Tests in
the NASA Lewis Icing Research
Tunnel," AGARD Conference
Proceedings 496, Paper No. 9, Dec.
1991.

4. Gentry, Garl L. Jr., Quinto, P. Frank,
Gatlin, Gregory M., and Applin, Zachary
T.,"The Langley 14- by 22-Foot
Subsonic Tunnel: Description, Flow
Characteristics, and Guide for
Users",NASA TP 3008, September
1990.

5. Paulson, John P.,"Wind-Tunnel
Results of the Aerodynamic
Characteristics of a 1/8-Scale Model of
a Twin-Engine Short-Haul Transport",
NASA TM X-74011, April 1977.

6. Hill, Eugene G., Personal
communication, November 1992.

7. Wilder, Ramon, W.,"A theoretical and
experimental means to predict ice
accretion shapes for evaluating aircraft
handling and performance
characteristics", Paper 5, AGARD
Advisory Report No. 127, September
1977.

8. Bowden, D.T., Gensemer, A.G., and
Sheen, C.A.,"Engineering Summary of
Airframe Icing Technical Data, FAA
Technical Data, FAA Technical Report
ADS-4, December 1963.

9. Hansman, R. John,"Analysis of
Surface Roughness Generation in
Aircraft Ice Accretion", AIAA-92-0298,
January 1992.

10. Shin, Jaiwon,"Characteristics of
Surface Roughness Associated with
Leading Edge Ice Accretion",AIAA-94-
0799, NASA TM-106459, January
1994.

11. Cebeci, T. and Chang,
K.C.,"Calculation of Incompressible
Rough-Wall Boundary-Layer
Flows",AIAA Journal, Vol. 16, No. 7,
July 1978.

12. Cebeci, T., Clark, R.W., Chang,
K.C., Halsey, N.D. and Lee, K.,"Airfoils
with Separation and the Resulting
Wakes",Journal of Fluid Mechanics,
Vol. 163, pp. 320-347, 1986.

13. Heyson, Harry H.,"Use of
Superposition in Digital Computers to
Obtain Wind-Tunnel Interference
Factors for Arbitrary Configurations,
With Particular Reference to V/STOL
Models", NASA TR R-302, February
1969.

14. Rae, W.H., Jr., and Pope, A,     Low-   
    Speed Wind Tunnel Testing    , John
Wiley & Sons, Inc., 1984.



7

Figure 1.—NASA Langley 1/8 scale twin engine subsonic transport model.

Figure 2.—Ice shape #1 on the model horizontal tail.
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Figure 3.—Ice shape #2 on the model horizontal tail.

Figure 4.—Grit applied to ice shapes.
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Figure 5.—Effects of Ice #2 on longitudinal aerodynamic characteristics of the model in the δf=40° configuration.
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Figure 6.—Effects of Ice #2 on wing pressure distributions for the model in the δf=40° configuration.
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Figure 6 (concluded).—Effects of Ice #2 on the wing pressure distribution for the model in the δf=40° configuation.
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Figure 7.—Effects of Ice #2 on the wing pressure distributions for the model in the δf=40° configuration.
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Figure 7 (concluded).—Effects of Ice #2 on the wing pressure distributions for the model in the δf=40° configuration.



14

Figure 8.—Effects of Ice #2 on the wing pressure distributions for the model in the δf=40° configuration.
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 Figure 8 (concluded).—Effects of Ice #2 on the wing pressure distributions for the model in the δf=40° configuration.
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 Figure 9.—Effects of Ice #2 on the wing pressure distributions for the model in the δf=40° configuration.
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Figure 9 (concluded).—Effects of Ice #2 on the wing pressure distributions for the model in the δf=40° configuration.
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Figure 10.—Main wing flow visualization for no ice, δf=40o, a=0o, b=0o condition.

Figure 11.—Main wing flow visualization for ice #2, δf=40o, a=0o, b=0o condition.
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Figure 12.—Main wing flow visualization for no ice, δf=40o, a=8o, b=0o condition.

Figure 13.—Main wing flow visualization for ice #2, δf =40o, a=8o, b=0o condition.
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Figure 14.—Main wing flow visualization for no ice, δf =40o, a=10o, b=0o condition.

Figure 15.—Main wing flow visualization for ice #2, δf =40o, a=10o, b=0o condition.
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Figure 16.—Main wing flow visualization for no ice, δf =40o, a=12o, b=0o condition.

Figure 17.—Main wing flow visualization for ice #2, δf =40o, a=12o, b=0o condition.
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Figure 18.—Main wing flow visualization for no ice, δf =40o, a=13o, b=0o condition.

Figure 19.—Main wing flow visualization for ice #2, δf =40o, a=13o, b=0o condition.
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Figure 20.—Main wing flow visualization for no ice, δf =40o, a=15o, b=0o condition.

Figure 21.—Main wing flow visualization for ice #2, δf =40o, a=15o, b=0o condition.
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